Details

Green Energy to Sustainability: Strategies for Global Industries


Green Energy to Sustainability: Strategies for Global Industries


1. Aufl.

von: Alain A. Vertes, Nasib Qureshi, Hans P. Blaschek, Hideaki Yukawa

CHF 93.00

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.03.2020
ISBN/EAN: 9781119152040
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation</b></p> <p>Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions.</p> <p><i>Green Energy to Sustainability: Strategies for Global Industries</i> examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain.</p> <ul> <li>Offers extensive updates on the field of green energy for global industries</li> <li>Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more</li> <li>Provides an expanded focus on the next generation of energy technologies</li> <li>Reviews the latest advances in biofuel manufacturing technologies</li> <li>Integrates scientific, technological and business perspectives</li> <li>Highlights important developments needed for replacing fossil fuels with green energy</li> </ul> <p><i>Green Energy to Sustainability: Strategies for Global Industries</i> will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.</p>
<p>About the Editors xxi</p> <p>List of Contributors xxv</p> <p>Foreword xxxi</p> <p>Preface xxxiii</p> <p><b>Part I Structure of the Energy Business 1</b></p> <p><b>1 Economic Growth and the Global Energy Demand 3<br /></b><i>Jürgen Scheffran, Miriam Felkers and Rebecca Froese</i></p> <p>1.1 Historical Context and Relationship Between Energy and Development 3</p> <p>1.2 Conceptual Framework for Pathways of Energy Use 6</p> <p>1.3 World Population Trends and Prospects 7</p> <p>1.4 Gross Domestic Product (GDP) and Economic Growth 8</p> <p>1.5 Global Energy Development 11</p> <p>1.6 Global Emissions of Greenhouse Gases 14</p> <p>1.7 Linkages Between Kaya Factors 16</p> <p>1.8 Development of Energy Investment 28</p> <p>1.9 Conditions for Energy Transition and Decarbonization 31</p> <p>1.10 Perspectives 37</p> <p>Acknowledgments 38</p> <p>References 38</p> <p><b>2 The Energy Mix in Japan Post-Fukushima 45<br /></b><i>Seiji Nakagame</i></p> <p>2.1 Greenhouse Gas (GHG) Emissions by Japan 45</p> <p>2.2 Energy Dependence 46</p> <p>2.3 The Energy Policy of Japan 48</p> <p>2.4 Paris Agreement 49</p> <p>2.5 Prospective Energy Demand 50</p> <p>2.6 Improvement in Energy Efficiency 50</p> <p>2.7 Reduction of CO<sub>2</sub> Emission in Electric Generation 51</p> <p>2.8 Development of New Technologies for Decreasing GHG Emissions 51</p> <p>2.9 Production and Use of Bioethanol in Japan 51</p> <p>2.10 Production and Use of Hydrocarbons in Japan 52</p> <p>2.11 Production and Use of Hydrogen in Japan 52</p> <p>2.12 Contributions of the Japanese Government to Fundamental Research and Development 52</p> <p>2.13 Perspectives 53</p> <p>References 53</p> <p><b>3 Green Energy in Africa, Asia, and South America 57<br /></b><i>Daniel de Castro Assumpção, Marcelo Hamaguchi, José Dilcio Rocha and Adriano P. Mariano</i></p> <p>3.1 Introduction 57</p> <p>3.2 South America 58</p> <p>3.3 Africa 62</p> <p>3.4 Southeast Asia 66</p> <p>3.5 China 69</p> <p>3.6 Global Perspectives 72</p> <p>References 72</p> <p><b>4 The Development of Solar Energy Generation Technologies and Global Production Capabilities 77<br /></b><i>F. John Hay and N. Ianno</i></p> <p>4.1 Introduction 77</p> <p>4.2 Sunlight and Photosynthesis 78</p> <p>4.3 Photovoltaic Devices 79</p> <p>4.4 Overview of Solar Photovoltaic Applications 82</p> <p>4.5 Perspectives 83</p> <p>References 84</p> <p><b>5 Recent Trends, Opportunities and Challenges of Sustainable Aviation Fuel 85<br /></b><i>Libing Zhang, Terri L. Butler and Bin Yang</i></p> <p>5.1 Introduction 85</p> <p>5.2 Overview of the Jet Fuel Market 86</p> <p>5.3 Assessment of Environmental Policy and Economic Factors Affecting the Aviation Industry 93</p> <p>5.4 Current Activities Around Biojet in the Aviation Industry 98</p> <p>5.5 Challenges of Future Biojet Fuel Development 100</p> <p>5.6 Perspectives 104</p> <p>Acknowledgments 105</p> <p>References 105</p> <p><b>6 The Environmental Impact of Pollution Prevention and Other Sustainable Development Strategies Implemented by the Automotive Manufacturing Industry 111<br /></b><i>Sandra D. Gaona, Cheryl Keenan, Cyril Vallet, Lawrence Reichle and Stephen C. DeVito</i></p> <p>6.1 Introduction 111</p> <p>6.2 Overview of the Automotive Manufacturing Industry 112</p> <p>6.3 Chemicals and Chemical Waste in Automotive Manufacturing 114</p> <p>6.4 Pollution Prevention in Automotive Manufacturing 121</p> <p>6.5 Perspectives 131</p> <p>Disclaimer 134</p> <p>References 134</p> <p><b>7 The Global Demand for Biofuels and Biotechnology-Derived Commodity Chemicals: Technologies, Markets, and Challenges 137<br /></b><i>Stephen R. Hughes and Marjorie A. Jones</i></p> <p>7.1 Introduction 137</p> <p>7.2 Overview of Global Energy Demand 137</p> <p>7.3 Petroleum Demand and Petroleum Products for Potential Replacement by Bioproducts 140</p> <p>7.4 Role of Biofuels and Biobased Chemicals in Renewable Energy Demand 143</p> <p>7.5 Achieving Petroleum Replacement with Biobased Fuels and Chemicals 145</p> <p>7.6 Projections of Global Demand for Biobased Fuels and Chemicals 149</p> <p>7.7 Potential Impacts on Price of Transportation Fuels and Chemicals Assuming Various Scenarios of World Economic Growth 151</p> <p>7.8 Projection of Energy-Related CO<sub>2</sub> Emissions With or Without Remediation Technology 151</p> <p>7.9 Government Impact on Demand for Biofuels and Biobased Chemicals 152</p> <p>7.10 Perspectives 154</p> <p>References 155</p> <p><b>Part II Chemicals and Transportation Fuels from Biomass 157</b></p> <p><b>8 Sustainable Platform Chemicals from Biomass 159<br /></b><i>Ankita Juneja and Vijay Singh</i></p> <p>8.1 Introduction 159</p> <p>8.2 2-Carbon 161</p> <p>8.3 3-Carbon 163</p> <p>8.4 4-Carbon 166</p> <p>8.5 5-Carbon 169</p> <p>8.6 6-Carbon 171</p> <p>8.7 Perspectives 174</p> <p>References 175</p> <p><b>9 Biofuels from Microalgae and Seaweeds: Potentials of Industrial Scale Production 185<br /></b><i>Licheng Peng, Freeman Lan and Christopher Q. Lan</i></p> <p>9.1 Introduction 185</p> <p>9.2 Biofuels 186</p> <p>9.3 Biofuels from Microalgae and Seaweeds 191</p> <p>9.4 Recent Developments in Algae Processing Technologies 195</p> <p>9.5 Potential for Industrial Scale Production 200</p> <p>9.6 Progresses in the Commercial Production of Alga-Based Biofuels 205</p> <p>9.7 Perspectives 209</p> <p>References 210</p> <p><b>10 Advanced Fermentation Technologies: Conversion of Biomass to Ethanol by Organisms Other</b> <b>than Yeasts, a Case for Escherichia coli 219<br /></b><i>K. T. Shanmugam, Lorraine P. Yomano, Sean W. York and Lonnie O. Ingram</i></p> <p>10.1 Introduction 219</p> <p>10.2 <i>Zymomonas mobilis</i> 222</p> <p>10.3 <i>Escherichia coli</i> 223</p> <p>10.4 Osmotic Stress of High Sugar Concentration 227</p> <p>10.5 Inhibitor-Tolerant Ethanologenic <i>E. coli</i> 227</p> <p>10.6 Engineering Bacterial Biocatalysts Other than <i>E. coli</i> for the Production of Ethanol Using the PDC/ADH Pathway 229</p> <p>10.7 Ethanol Production by Non-PDC Pathways 230</p> <p>10.8 Partition of Carbon at the Pyruvate Node 231</p> <p>10.9 Other Metabolic Pathways that Contribute to Ethanol Production 231</p> <p>10.10 Perspectives 232</p> <p>Acknowledgements 232</p> <p>References 233</p> <p><b>11 Clostridia and Process Engineering for Energy Generation 239<br /></b><i>Adriano P. Mariano, Danilo S. Braz, Henrique C. A. Venturelli and Nasib Qureshi</i></p> <p>11.1 Introduction 239</p> <p>11.2 Recent Technological Advances 241</p> <p>11.3 Economic Modelling and Case Study 246</p> <p>11.4 Perspectives 263</p> <p>Acknowledgements 263</p> <p>References 264</p> <p><b>12 Fuel Ethanol Production from Lignocellulosic Materials Using Recombinant Yeasts 269<br /></b><i>Stephen R. Hughes and Marjorie A. Jones</i></p> <p>12.1 Review of Current Fuel Ethanol Production 269</p> <p>12.2 Evolution of Cost of Cellulosic Ethanol Production 272</p> <p>12.3 Technological Opportunities to Reduce Cellulosic Ethanol Production Costs 277</p> <p>12.4 Perspectives: Approaches to Optimize the Use of Lignocellulosic and Waste Materials as Feedstocks 279</p> <p>References 281</p> <p><b>13 Enzymes for Cellulosic Biomass Hydrolysis and Saccharification 283<br /></b><i>Elmar M. Villota, Ziyu Dai, Yanpin Lu and Bin Yang</i></p> <p>13.1 Introduction 283</p> <p>13.2 Glycosyl Hydrolases: General Structure and Mechanism 286</p> <p>13.3 The Cellulase Enzyme System 289</p> <p>13.4 The Hemicellulase Enzyme System 295</p> <p>13.5 Microorganisms for Biomass Hydrolysis 299</p> <p>13.6 Perspectives 308</p> <p>Acknowledgement 309</p> <p>References 309</p> <p><b>14 Life Cycle Assessment of Biofuels and Green Commodity Chemicals 327<br /></b><i>Mairi J. Black, Onesmus Mwabonje, Aiduan Li Borrion and Aurelia Karina Hillary</i></p> <p>14.1 Introduction 327</p> <p>14.2 Life Cycle Assessment (LCA) 328</p> <p>14.3 The Origin and Principles of Life Cycle Assessment 329</p> <p>14.4 Developing a Life Cycle Assessment 329</p> <p>14.5 Scope of the Life Cycle Assessment: Attributional verses Consequential 331</p> <p>14.6 Biofuels and Green Commodity Chemicals 332</p> <p>14.7 Feedstocks for Biofuels 332</p> <p>14.8 Conversion of Feedstock 333</p> <p>14.9 Supply Chain and Logistics 335</p> <p>14.10 Using LCA as a Tool to Assess GHG Emissions and Other Impacts Associated with Bioethanol Production and Supply 335</p> <p>14.11 Discussion on the Suitability of LCA 336</p> <p>14.12 Perspectives: Moving Forward with the LCA Concept 348</p> <p>References 349</p> <p><b>Part III Hydrogen and Methane 355</b></p> <p><b>15 Biotechnological Production of Fuel Hydrogen and Its Market Deployment 357<br /></b><i>Carolina Zampol Lazaro, Emrah Sagir and Patrick C. Hallenbeck</i></p> <p>15.1 Introduction 357</p> <p>15.2 Hydrogen Production Through Dark Fermentation 358</p> <p>15.3 Hydrogen Production Through Photofermentation 370</p> <p>15.4 Hydrogen Production by Combined Systems 370</p> <p>15.5 Perspectives 379</p> <p>Acknowledgements 383</p> <p>References 383</p> <p><b>16 Deployment of Biogas Production Technologies in Emerging Countries 395<br /></b><i>Guangyin Zhen, Xueqin Lu, Xiaohui Wang, Shaojuan Zheng, Jianhui Wang, Zhongxiang Zhi, Lianghu Su, Kaiqin Xu, Takuro Kobayashi, Gopalakrishnan Kumar and Youcai Zhao</i></p> <p>16.1 Introduction 395</p> <p>16.2 Types of Feedstock 397</p> <p>16.3 Pretreatment Technologies of Anaerobic Digestion Feedstocks 404</p> <p>16.4 Full-scale Implementation Status of Anaerobic Digestion in Developing Countries 413</p> <p>16.5 Perspectives 416</p> <p>References 416</p> <p><b>17 Hydrogen Production by Algae 425<br /></b><i>Tunc Catal and Halil Kavakli</i></p> <p>17.1 Importance of Hydrogen Production 425</p> <p>17.2 Hydrogen Producing Microorganisms 427</p> <p>17.3 Hydrogen Producing Algae (Macro–Micro) Species 428</p> <p>17.4 Production of Biohydrogen Through Fermentation 431</p> <p>17.5 Technologies (Solar Algae Fuel Cell/Microbial Fuel Cell) 433</p> <p>17.6 Possibility of Commercial Production of Hydrogen 434</p> <p>17.7 Perspectives and Future Implications of Algae in Biotechnology 437</p> <p>References 438</p> <p><b>18 Production and Utilization of Methane Biogas as Renewable Fuel 447<br /></b><i>Ganesh Dattatraya Saratale, Jeyapraksh Damaraja, Sutha Shobana, Rijuta Ganesh Saratale, Sivagurunathan Periyasamy, Gunagyin Zhen and Gopalakrishnan Kumar</i></p> <p>18.1 Introduction 447</p> <p>18.2 Anaerobic Digestion 448</p> <p>18.3 Mechanism of Anaerobic Digestion 449</p> <p>18.4 Significant Factors Influencing Anaerobic Digestion 455</p> <p>18.5 Strategies Applied to Enhance Microalgae Methane Biogas Production 456</p> <p>18.6 Utilization of Methane Biogas as a Renewable Fuel 458</p> <p>18.7 Perspectives 459</p> <p>References 459</p> <p><b>Part IV Perspectives 465</b></p> <p><b>19 Integrated Biorefineries for the Production of Bioethanol, Biodiesel, and Other Commodity Chemicals 467<br /></b><i>Pedro F Souza Filho and Mohammad J Taherzadeh</i></p> <p>19.1 Introduction 467</p> <p>19.2 Types of Biorefineries 468</p> <p>19.3 Biorefinery Platforms 471</p> <p>19.4 Integrated Biorefineries 472</p> <p>19.5 Coproducts 475</p> <p>19.6 Integrating Ethanol and Biodiesel Refineries 480</p> <p>19.7 Economical Aspects 482</p> <p>19.8 Perspectives 484</p> <p>References 484</p> <p><b>20 Lignocellulosic Crops as Sustainable Raw Materials for Bioenergy 489<br /></b><i>Emiliano Maletta and Carlos Hernández Díaz-Ambrona</i></p> <p>20.1 Introduction 489</p> <p>20.2 Major Lignocellulosic Industrial Crops 492</p> <p>20.3 Social, Economic and Environmental Aspects in Sustainability Criteria 498</p> <p>20.4 Processing Alternatives for Lignocellulosic Bioenergy Crops 502</p> <p>20.5 Filling the Gap: From Farm to Industry 503</p> <p>20.6 Perspectives 506</p> <p>References 508</p> <p><b>21 Industrial Waste Valorization: Applications to the Case of Liquid Biofuels 515<br /></b><i>Haibo Huang and Qing Jin</i></p> <p>21.1 Introduction 515</p> <p>21.2 Types of Industrial Waste for Biofuel Production 516</p> <p>21.3 Ethanol Production 517</p> <p>21.4 Butanol 523</p> <p>21.5 Biodiesel 527</p> <p>21.6 Perspectives 531</p> <p>References 531</p> <p><b>22 The Environmental Impact of Pollution Prevention, Sustainable Energy Generation, and Other Sustainable Development Strategies Implemented by the Food Manufacturing Sector 539<br /></b><i>Sandra D. Gaona, T.J. Pepping, Cheryl Keenan and Stephen C. DeVito</i></p> <p>22.1 Introduction 539</p> <p>22.2 Overview of the Food Manufacturing Industry 540</p> <p>22.3 Chemicals and Chemical Wastes in the Food Manufacturing Industry 545</p> <p>22.4 Pollution Prevention in Food Manufacturing 554</p> <p>22.5 Perspectives 563</p> <p>Disclaimer 564</p> <p>References 564</p> <p><b>23 Financing Strategies for Sustainable Bioenergy and the Commodity Chemicals Industry 569<br /></b><i>Praveen V. Vadlani</i></p> <p>23.1 The Current Financing Scenario at Global Level 569</p> <p>23.2 Ethanol Biofuel Industry – An Overview 572</p> <p>23.3 Bio-Based Industry – Current Status and Future Potential 577</p> <p>23.4 Financing and Investment Strategy for Bio-Based Industries 579</p> <p>23.5 Perspectives and Sustainable Financing Approach – Change in Wall Street Mindset in the Valuation of Bio-Based Industries 583</p> <p>Acknowledgements 584</p> <p>References 585</p> <p><b>24 Corporate Social Responsibility and Corporate Sustainability as Forces of Change 587<br /></b><i>Asutosh T. Yagnik</i></p> <p>24.1 Introduction 587</p> <p>24.2 Corporate Social Responsibility (CSR) 587</p> <p>24.3 From CSR to Corporate Sustainability 597</p> <p>24.4 Perspectives 603</p> <p>References 607</p> <p><b>25 The Industrial World in the Twenty-First Century 613<br /></b><i>Alain A. Vertès</i></p> <p>25.1 Introduction: Energy and Sustainability 613</p> <p>25.2 Transportation in the Twenty-First Century: A Carbon Tax Story 622</p> <p>25.3 Cities of Change 627</p> <p>25.4 The Chemical Industry Revisited 629</p> <p>25.5 Paradigm Changes in Modes of Consumption 633</p> <p>25.6 International Action for Curbing the Pollution of the Atmosphere Commons: The Case of CFCs and the Ozone Layer 634</p> <p>25.7 Social Activism as an Engine of Change: Requiem for a Wonderful World 635</p> <p>25.8 Perspectives: A Brave New World 636</p> <p>References 639</p> <p>Index 649</p>
<p><b>ALAIN A. VERTÈS, P<small>H</small>D,</b> Sloan Fellow, London Business School, London, UK, and Managing Director of NxR Biotechnologies, Basel Switzerland, is a strategy and business development consultant and works to enable innovation deployment, funding and partnering in biotechnology.</p> <p><b>NASIB QURESHI, P<small>H</small>D,</b> is a Senior Research Chemical Engineer in Bioenergy Research Unit at the United States Department of Agriculture in Peoria, Illinois, USA, as well as, Adjunct Professor at the University of Illinois at Urbana-Champaign, USA.</p> <p><b>HANS P. BLASCHEK, P<small>H</small>D,</b> is Professor Emeritus in the Department of Food Science and Human Nutrition at the University of Illinois, Urbana-Champaign, USA.</p> <p><b>HIDEAKI YUKAWA,</b> is the Chief Executive Officer of the Utilization of Carbon Dioxide Institute, Tokyo, Japan.</p>
<p><b>Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation</b> <p>Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. <p><i>Green Energy to Sustainability: Strategies for Global Industries</i> examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. <ul> <li>Offers extensive updates on the field of green energy for global industries</li> <li>Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more</li> <li>Provides an expanded focus on the next generation of energy technologies</li> <li>Reviews the latest advances in biofuel manufacturing technologies</li> <li>Integrates scientific, technological and business perspectives</li> <li>Highlights important developments needed for replacing fossil fuels with green energy</li> </ul> <p><i>Green Energy to Sustainability: Strategies for Global Industries</i> will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
CHF 62.00