Details

Ionizing Radiation Technologies


Ionizing Radiation Technologies

Managing and Extracting Value from Wastes
Institute of Food Technologists Series 1. Aufl.

von: Shima Shayanfar, Suresh D. Pillai

CHF 183.00

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 02.08.2022
ISBN/EAN: 9781119488569
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Ionizing Radiation Technologies</b> <p><b>An authoritative overview of major advances in the application of ionizing radiation technologies to industrial, agricultural, and municipal waste products</b> <p>In <i>Ionizing Radiation Technologies: Managing and Extracting Value from Wastes</i>, a team of expert researchers delivers a broad overview of the value trapped in waste streams and how a strategic application of ionizing radiation technologies can be valuable from both an environmental and an economic perspective. A valuable addition to the discussions around sustainability and green technologies, the book introduces ionizing radiation technologies, including gamma (cobalt-60) irradiation and high and low energy electron beam technologies. <p>The contributions included explore the major advances taking place in the application of ionizing radiation technologies to derive high value end-products from agricultural, municipal, and industrial wastes. Each chapter reviews original research and data and considers likely future directions in research and development. The book also includes: <ul><li>A thorough introduction to the application of ionizing radiation technologies to agricultural waste, including the production of activated carbon</li> <li>Comprehensive explorations of the application of ionizing radiation technologies to municipal waste, including municipal solid wastes and recycling wastewater</li> <li>Practical discussions of the application of ionizing radiation technologies to industrial waste, including textile wastewater management and polymer recycling</li> <li>In-depth examinations of the economics of waste valorization, including several case studies of businesses involved in waste valorization</li></ul> <p>Perfect for consulting engineers and industry professionals involved in waste management and mitigation, <i>Ionizing Radiation Technologies</i> will also earn a place in the libraries of professionals at government agencies, international food organizations, and NGOs focused on waste management, environment sustainability, and urban planning.
<p>Contents</p> <p>List of Contributors <i>xi</i></p> <p>Preface <i>xiv</i></p> <p>Acknowledgments <i>xvi</i></p> <p>1 Introduction<i> 1</i></p> <p>Shima Shayanfar and Suresh D. Pillai</p> <p>References<i> 3</i></p> <p><br />2 Radiation Processing Using Cobalt-60 Gamma Rays<i> 4</i></p> <p>Kevin O’Hara</p> <p>2.1 Introduction<i> 4</i></p> <p>2.2 Overview of Cobalt-60—The Radiation Source<i> 4</i></p> <p>2.3 Overview of Cobalt-60 Gamma Technology<i> 5</i></p> <p>2.4 Cobalt-60 Safety and Security<i> 9</i></p> <p>2.5 The Future of Cobalt-60 Gamma Technology<i> 10</i></p> <p>References<i> 10<br /><br /></i></p> <p>3 X-ray Technology<i> 12</i></p> <p>Jeremy Brison, Rick Galloway, Christophe Malice, and Josef Mittendorfer</p> <p>3.1 Introduction to X-ray Technology<i> 12</i></p> <p>3.2 Physical Properties of X-rays<i> 14</i></p> <p>3.3 X-rays Today<i> 21</i></p> <p>3.4 The X-ray Vision<i> 36</i></p> <p>References<i> 37<br /><br /></i></p> <p>4 Low-Energy Electron Beam Technologies: Deriving Value from Waste<i> 39</i></p> <p>P. Michael Fletcher</p> <p>4.1 Introduction and History<i> 39</i></p> <p>4.2 Ranges of Energy for Electron Accelerators<i> 40</i></p> <p>4.3 Shielding Considerations<i> 41</i></p> <p>4.4 Absorption of Electron Energy by Materials<i> 42</i></p> <p>4.5 Absorption of Electrons’ Negative Charges by Materials<i> 45</i></p> <p>4.6 Predicting Depth of Electron Penetration into Products<i> 45</i></p> <p>4.7 Dose Measurements and Machine Characterization<i> 46</i></p> <p>4.8 Equipment Supplier Brief History<i> 47</i></p> <p>4.9 Low-Energy EB Applications<i> 49</i></p> <p>4.10 X-ray Shielding and Product Processing<i> 51</i></p> <p>4.11 Low-Energy X-ray Machines Made from Low-Energy EB Machines<i> 52</i></p> <p>References<i> 52<br /><br /></i></p> <p>5 Accelerator Technology for Waste Valorization<i> 53</i></p> <p>David Brown</p> <p>5.1 Introduction<i> 53</i></p> <p>5.2 General Properties of the Electron Beam<i> 56</i></p> <p>5.3 Delivering “Dose” to Materials<i> 57</i></p> <p>5.4 Integration of Accelerator Technologies into Waste Processing Facilities<i> 59</i></p> <p>5.5 Integration of E-Beam Systems—An Overview (or “How to Speak to an Accelerator Supplier”)<i> 59</i></p> <p>5.6 Process Design, Accelerator Specification, and Machine Selection<i> 60</i></p> <p>5.7 Staffing Considerations for Waste Processing Facilities<i> 61</i></p> <p>5.8 It’s All about the Dose to the Product<i> 63</i></p> <p>5.9 An Overview of Radiation Processing Standards Related to Machine-Based Sources<i> 68</i></p> <p>Reference<i> 78<br /><br /></i></p> <p>6 Biofuel Production Using Ionizing Technology from Agricultural Waste<i> 79</i></p> <p>Tan Kean Meng and Mohd Asyraf Kassim</p> <p>6.1 Introduction<i> 79</i></p> <p>6.2 Agriculture Waste<i> 80</i></p> <p>6.3 Biofuel<i> 81</i></p> <p>6.4 Pretreatment<i> 82</i></p> <p>6.5 Ionizing Radiation<i> 83</i></p> <p>6.6 Effect of Ionizing Radiation Pretreatment<i> 87</i></p> <p>6.7 Bioethanol<i> 90</i></p> <p>6.8 Biomethane<i> 91</i></p> <p>6.9 Biohydrogen<i> 93</i></p> <p>6.10 Conclusions<i> 94</i></p> <p>References<i> 95<br /><br /></i></p> <p>7 Ionizing Technology Effects on Bioactive Compounds from Food Products<i> 104</i></p> <p>J.R. Rodríguez-Núñez, A. Rodríguez-Félix, P. I. Campa-Siqueiros, L. Val-Félix, <br /> and T.J. Madera-Santana</p> <p>7.1 Introduction<i> 104</i></p> <p>7.2 Valorization of Food Wastes<i> 105</i></p> <p>7.3 Food Components: Bioactive Compounds<i> 105</i></p> <p>7.4 Bioactive Compounds in Food Subjected to Ionizing Radiation<i> 106</i></p> <p>7.5 Conclusions<i> 113</i></p> <p>References<i> 113<br /><br /></i></p> <p>8 Remediation of Crude Oil Impacted Soils with Electron Beam Irradiation<i> 120</i></p> <p>John Lassalle, Kenneth Briggs, Thomas Thompson, Marco Martinez, Andrea Strzelec, <br /> and David Staack</p> <p>8.1 Introduction<i> 120</i></p> <p>8.2 Demand for Novel Remediation Techniques<i> 121</i></p> <p>8.3 Potential Advantages of Electron Beam Remediation<i> 122</i></p> <p>8.4 Process Implementation<i> 124</i></p> <p>8.5 Economic Feasibility<i> 131</i></p> <p>8.6 Comparison to Other Remediation Technologies<i> 132</i></p> <p>8.7 Conclusions<i> 133</i></p> <p>References<i> 134<br /><br /></i></p> <p>9 Application of E-beam Irradiation to Enhance Class B Disinfection Biosolids Processes to Class A Disinfection Treatment to Produce Value-Added Products<i> 136</i></p> <p>Robert S. Reimers, Yue Xu, Suresh D. Pillai, and Kari B. Fitzmorris-Brisolara</p> <p>9.1 Introduction<i> 136</i></p> <p>9.2 Enhanced Anaerobic Digestion<i> 138</i></p> <p>9.3 Application of eBeam to Enhance Anaerobic Digestion<i> 139</i></p> <p>9.4 Rationale for Upgrading Class B Plants to Class A<i> 141</i></p> <p>9.5 Value-Added Products<i> 145</i></p> <p>9.6 Value-Added Product Examples<i> 145</i></p> <p>9.7 Conclusions<i> 147</i></p> <p>References<i> 148<br /><br /></i></p> <p>10 Textile Wastewater Management by Ionizing Technology<i> 150</i></p> <p>Weihua Sun, Wenyi Wang, and Youxue Zhang</p> <p>10.1 Introduction<i> 150</i></p> <p>10.2 Characteristics of Textile Wastewater<i> 150</i></p> <p>10.3 Mechanisms and Influencing Factors of Treating Textile Wastewater by Ionizing Radiation<i> 152</i></p> <p>10.4 Ionizing Radiation Applied on Textile Wastewater Management<i> 161</i></p> <p>10.5 Conclusions<i> 176</i></p> <p>References<i> 177<br /><br /></i></p> <p>11 Using Ionizing Technologies on Natural Compounds and Wastes for the Development of Advanced Polymers and Active Packaging Materials<i> 180</i></p> <p>S. Salmieri, Leila Bagheri, and Monique Lacroix</p> <p>11.1 Introduction<i> 180</i></p> <p>11.2 Combination of Active Packaging with Gamma Irradiation<i> 182</i></p> <p>11.3 Development of Active Packaging Using Gamma Irradiation<i> 186</i></p> <p>11.4 Conclusions<i> 203</i></p> <p>References<i> 204<br /><br /></i></p> <p>12 Treatment of Emerging Organic Pollutants Using Ionizing Technology—A State of the Art Discussion<i> 210</i></p> <p>Yongxia Sun, Andrzej G. Chmielewski, and Henrietta Nichipor</p> <p>12.1 Introduction<i> 210</i></p> <p>12.2 Methodology<i> 211</i></p> <p>12.3 Main Factors Influencing Degradation of EOP<i> 211</i></p> <p>12.4 By-products of Selected Aromatic EOP Degradation under Ionizing Radiation<i> 212</i></p> <p>12.5 Toxicity of the Solution Containing Selected Aromatic EOPS Before and After Ionizing Radiation<i> 214</i></p> <p>12.6 Computer Simulation of Emerging Persistent Pollutant Perfluorooctanoic Acid (PFOA) Degradation under Electron Beam and Gamma Ray Radiation<i> 215</i></p> <p>12.7 Conclusions<i> 221</i></p> <p>References<i> 221<br /><br /></i></p> <p>13 Remediation of Poly- and Perfluorinated Chemical Substances (PFAS) in the Environment by Ionizing Technology<i> 223</i></p> <p>Suresh D. Pillai, Corinne Kowald, John Lassalle, and David Staack</p> <p>References<i>227<br /><br /></i></p> <p>14 Pharmaceutical Waste Management by Ionizing Technology<i> 229</i></p> <p>Gyuri Sági, Suresh D. Pillai, Erzsébet Takács, and László Wojnárovits</p> <p>14.1 Pharmaceuticals in the Environment<i> 229</i></p> <p>14.2 Common Practices of Pharmaceutical Wastewater Management<i> 230</i></p> <p>14.3 Disposal of Model Wastewater with Ionizing Radiation<i> 231</i></p> <p>14.4 Irradiation of Actual Wastewater Samples<i> 236</i></p> <p>14.5 Economic Considerations, Practical Applications<i> 238</i></p> <p>References<i> 238<br /><br /></i></p> <p>15 Future Needs and Trends in Waste Management by Ionizing Technologies<i> 242</i></p> <p>Shima Shayanfar and Suresh D. Pillai</p> <p>15.1 The Future of Ionizing Technology Platforms<i> 243</i></p> <p>15.2 Ionizing Technology for Animal Waste Rendering<i> 244</i></p> <p>15.3 Ionizing Technology for Generating Energy from Waste Streams<i> 245</i></p> <p>15.4 Ionizing Technology for Development of High-Value Phytochemicals and Plant Growth Promoters<i> 245</i></p> <p>15.5 Suggested Roadmap for the Future<i> 246</i></p> <p>References<i> 246<br /><br /></i></p> <p>Index<i> 248</i></p>
<p><b> About the Editors</b></p> <p><b>Shima Shayanfar,</b> Research and Development Scientist, Herbalife Nutrition U.S., California, USA. <p><b>Suresh D. Pillai,</b> Director of the National Center for Electron Beam Research, and Professor of Microbiology, Texas A&M University, Texas, USA.
<p><b>An authoritative overview of major advances in the application of ionizing radiation technologies to industrial, agricultural, and municipal waste products</b></p> <p>In <i>Ionizing Radiation Technologies: Managing and Extracting Value from Wastes</i>, a team of expert researchers delivers a broad overview of the value trapped in waste streams and how a strategic application of ionizing radiation technologies can be valuable from both an environmental and an economic perspective. A valuable addition to the discussions around sustainability and green technologies, the book introduces ionizing radiation technologies, including gamma (cobalt-60) irradiation and high and low energy electron beam technologies. <p>The contributions included explore the major advances taking place in the application of ionizing radiation technologies to derive high value end-products from agricultural, municipal, and industrial wastes. Each chapter reviews original research and data and considers likely future directions in research and development. The book also includes: <ul><li>A thorough introduction to the application of ionizing radiation technologies to agricultural waste, including the production of activated carbon</li> <li>Comprehensive explorations of the application of ionizing radiation technologies to municipal waste, including municipal solid wastes and recycling wastewater</li> <li>Practical discussions of the application of ionizing radiation technologies to industrial waste, including textile wastewater management and polymer recycling</li> <li>In-depth examinations of the economics of waste valorization, including several case studies of businesses involved in waste valorization</li></ul> <p> Perfect for consulting engineers and industry professionals involved in waste management and mitigation, <i>Ionizing Radiation Technologies</i> will also earn a place in the libraries of professionals at government agencies, international food organizations, and NGOs focused on waste management, environment sustainability, and urban planning.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
CHF 62.00