Details

Metal-Fluorocarbon Based Energetic Materials


Metal-Fluorocarbon Based Energetic Materials


1. Aufl.

von: Ernst-Christian Koch

CHF 156.00

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 15.12.2011
ISBN/EAN: 9783527644209
Sprache: englisch
Anzahl Seiten: 360

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Metal-Fluorocarbon Based Energetic Materials</b> <p> This exciting new book details all aspects of a major class of pyrolants and elucidates the progress that has been made in the field, covering both the chemistry and applications of these compounds.<p> Written by a pre-eminent authority on the subject from the NATO Munitions Safety Information Analysis Center (MSIAC), it begins with a historical overview of the development of these materials, followed by a thorough discussion of their ignition, combustion and radiative properties. The next section explores the multiple facets of their military and civilian applications, as well as industrial synthetic techniques. The critical importance of the associated hazards, namely sensitivity, stability and aging, are discussed in detail, and the book is rounded off by an examination of the future of this vital and expanding field.<p>The result is a complete guide to the chemistry, manufacture, applications and required safety precautions of pyrolants for both the military and chemical industries.<p><b>From the preface:</b><BR>“... This book fills a void in the collection of pyrotechnic literature... <BR>it will make an excellent reference book that all researchers of pyrolants and energetics must have...” <BR><i>Dr. Bernard E. Douda, Dr. Sara Pliskin, NAVSEA Crane, IN, USA</i>
<p>Foreword xiii</p> <p>Preface xv</p> <p>Acknowledgment xvii</p> <p><b>1 Introduction to Pyrolants </b><b>1</b></p> <p>References 3</p> <p><b>2 History </b><b>6</b></p> <p>2.1 Organometallic Beginning 6</p> <p>2.2 Explosive & Obscurant Properties 8</p> <p>2.3 Rise of Fluorocarbons 10</p> <p>2.4 Rockets Fired Against Aircraft 13</p> <p>2.5 Metal/Fluorocarbon Pyrolants 15</p> <p>References 17</p> <p>Further Reading 19</p> <p><b>3 Properties of Fluorocarbons </b><b>20</b></p> <p>3.1 Polytetrafluoroethylene (PTFE) 20</p> <p>3.2 Polychlorotrifluoroethylene (PCTFE) 22</p> <p>3.3 Polyvinylidene Fluoride (PVDF) 24</p> <p>3.4 Polycarbon Monofluoride (PMF) 25</p> <p>3.5 Vinylidene Fluoride–Hexafluoropropene Copolymer 27</p> <p>3.5.1 LFC-1 28</p> <p>3.6 Vinylidene Fluoride–Chlorotrifluoroethylene Copolymer 28</p> <p>3.7 Copolymer of TFE and VDF 30</p> <p>3.8 Terpolymers of TFE, HFP and VDF 31</p> <p>3.9 Summary of chemical and physical properties of common fluoropolymers 33</p> <p>References 33</p> <p><b>4 Thermochemical and Physical Properties of Metals and their Fluorides </b><b>36</b></p> <p>References 41</p> <p><b>5 Reactivity and Thermochemistry of Selected Metal/Fluorocarbon Systems </b><b>42</b></p> <p>5.1 Lithium 42</p> <p>5.2 Magnesium 45</p> <p>5.3 Titanium 47</p> <p>5.4 Zirconium 52</p> <p>5.5 Hafnium 53</p> <p>5.6 Niob 53</p> <p>5.7 Tantalum 54</p> <p>5.8 Zinc 55</p> <p>5.9 Cadmium 56</p> <p>5.10 Boron 57</p> <p>5.11 Aluminium 59</p> <p>5.12 Silicon 63</p> <p>5.13 Calcium Silicide 64</p> <p>5.14 Tin 65</p> <p>References 66</p> <p><b>6 Ignition and Combustion Mechanism of MTV </b><b>68</b></p> <p>6.1 Ignition and Pre-Ignition of Metal/Fluorocarbon Pyrolants 68</p> <p>6.2 Magnesium–Grignard Hypothesis 68</p> <p>References 77</p> <p><b>7 Ignition of MTV </b><b>80</b></p> <p>References 85</p> <p><b>8 Combustion </b><b>87</b></p> <p>8.1 Magnesium/Teflon/Viton 87</p> <p>8.1.1 Pressure Effects on the Burn Rate 87</p> <p>8.1.2 Particle Size Distribution and Surface Area Effects on the Burn Rate 88</p> <p>8.2 Porosity 95</p> <p>8.3 Burn Rate Description 96</p> <p>8.4 Combustion of Metal–Fluorocarbon Pyrolants with Fuels Other than Magnesium 97</p> <p>8.4.1 Magnesium Hydride 97</p> <p>8.4.2 Alkali and Alkaline Earth Metal 98</p> <p>8.4.2.1 Lithium 98</p> <p>8.4.2.2 Magnesium–Aluminium Alloy 99</p> <p>8.4.3 Titan 99</p> <p>8.4.4 Zirconium 102</p> <p>8.4.5 Zinc 103</p> <p>8.4.6 Boron 104</p> <p>8.4.7 Magnesium Boride, MgB<sub>2</sub> 105</p> <p>8.4.8 Aluminium 105</p> <p>8.4.9 Silicon 108</p> <p>8.4.10 Silicides 110</p> <p>8.4.10.1 Dimagnesium Silicide, Mg<sub>2</sub>Si 110</p> <p>8.4.10.2 Calcium Disilicide 111</p> <p>8.4.10.3 Zirconium Disilicide 113</p> <p>8.4.11 Tungsten–Zirconium Alloy 113</p> <p>8.5 Underwater Combustion 114</p> <p>References 115</p> <p><b>9 Spectroscopy </b><b>119</b></p> <p>9.1 Introduction 119</p> <p>9.2 UV–VIS Spectra 120</p> <p>9.2.1 Polytetrafluoroethylene Combustion 121</p> <p>9.2.2 Magnesium/Fluorocarbon Pyrolants 122</p> <p>9.2.3 MgH<sub>2</sub>, MgB<sub>2</sub>, Mg<sub>3</sub>N<sub>2</sub>, Mg<sub>2</sub>Si/Mg<sub>3</sub>Al<sub>2</sub>/Fluorocarbon Based pyrolants 128</p> <p>9.2.4 Silicon/PTFE Based Pyrolants 133</p> <p>9.2.5 Boron/PTFE/Viton Based Pyrolants 134</p> <p>9.3 MWIR Spectra 135</p> <p>9.3.1 Polytetrafluoroethylene Combustion 136</p> <p>9.3.2 Magnesium/Fluorocarbon Combustion 136</p> <p>9.3.3 MgH<sub>2</sub>, MgB<sub>2</sub>, Mg<sub>3</sub>N<sub>2</sub>, Mg<sub>2</sub>Si/Fluorocarbon Based Pyrolants 139</p> <p>9.3.4 Si/Fluorocarbon Based Pyrolants 140</p> <p>9.3.5 Boron/PTFE/Viton Based Pyrolants 141</p> <p>9.4 Temperature Determination 141</p> <p>9.4.1 Condensed-Phase Temperature 142</p> <p>9.4.2 Gas-Phase Temperature 144</p> <p>References 148</p> <p><b>10 Infrared Emitters </b><b>151</b></p> <p>10.1 Decoy Flares 151</p> <p>10.2 Nonexpendable Flares 153</p> <p>10.2.1 Target Augmentation 153</p> <p>10.2.2 Missile Tracking Flares 156</p> <p>10.3 Metal–Fluorocarbon Flare Combustion Flames as Sources of Radiation 158</p> <p>10.3.1 Flame Structure and Morphology 160</p> <p>10.3.2 Radiation of MTV 162</p> <p>10.4 Infrared Compositions 165</p> <p>10.4.1 Inherent Effects 166</p> <p>10.4.1.1 Influence of Stoichiometry 166</p> <p>10.4.2 Spectral Flare Compositions 180</p> <p>10.4.3 Particle Size Issues 181</p> <p>10.4.4 Geometrical Aspects 181</p> <p>10.5 Operational Effects 184</p> <p>10.5.1 Altitude Effects 184</p> <p>10.5.2 Windspeed Effects 186</p> <p>10.6 Outlook 191</p> <p>References 193</p> <p><b>11 Obscurants </b><b>197</b></p> <p>11.1 Introduction 197</p> <p>11.2 Metal–Fluorocarbon Reactions in Aerosol Generation 199</p> <p>11.2.1 Metal–Fluorocarbon Reactions as an Exclusive Aerosol Source 200</p> <p>11.2.2 Metal–Fluorocarbon Reactions to Trigger Aerosol Release 201</p> <p>11.2.2.1 Metal–Fluorocarbon Reactions to Trigger Soot Formation 201</p> <p>11.2.2.2 Metal–Fluorocarbon Reactions to Trigger Phosphorus Vaporisation 204</p> <p>References 208</p> <p><b>12 Igniters </b><b>210</b></p> <p>References 214</p> <p><b>13 Incendiaries, Agent Defeat, Reactive Fragments and Detonation Phenomena </b><b>216</b></p> <p>13.1 Incendiaries 216</p> <p>13.2 Curable Fluorocarbon Resin–Based Compositions 217</p> <p>13.3 Document Destruction 218</p> <p>13.4 Agent Defeat 221</p> <p>13.5 Reactive Fragments 223</p> <p>13.6 Shockwave Loading of Metal–Fluorocarbons and Detonation-Like Phenomena 229</p> <p>References 232</p> <p>Further Reading 234</p> <p><b>14 Miscellaneous Applications </b><b>235</b></p> <p>14.1 Submerged Applications 235</p> <p>14.1.1 Underwater Explosives 235</p> <p>14.1.2 Underwater Flares 235</p> <p>14.1.3 Underwater Cutting Torch 236</p> <p>14.2 Mine-Disposal Torch 238</p> <p>14.3 Stored Chemical Energy 240</p> <p>14.3.1 Heating Device 240</p> <p>14.3.2 Stored Chemical Energy Propulsion 240</p> <p>14.4 Tracers 240</p> <p>14.5 Propellants 241</p> <p>References 244</p> <p><b>15 Self-Propagating High-Temperature Synthesis </b><b>247</b></p> <p>15.1 Introduction 247</p> <p>15.2 Magnesium 249</p> <p>15.3 Silicon and Silicides 252</p> <p>References 256</p> <p><b>16 Vapour-Deposited Materials </b><b>258</b></p> <p>References 262</p> <p><b>17 Ageing </b><b>264</b></p> <p>References 270</p> <p><b>18 Manufacture </b><b>271</b></p> <p>18.1 Introduction 271</p> <p>18.2 Treatment of Metal Powder 271</p> <p>18.3 Mixing 273</p> <p>18.3.1 Shock Gel Process 273</p> <p>18.3.1.1 Procedure A 273</p> <p>18.3.1.2 Procedure B 275</p> <p>18.3.2 Conventional Mixing 276</p> <p>18.3.3 Experimental Super Shock Gel Process 276</p> <p>18.3.4 Experimental Dry Mixing Technique 280</p> <p>18.3.5 Experimental Cryo-N<sub>2</sub> Process 282</p> <p>18.3.6 Extrusion 282</p> <p>18.3.6.1 Twin Screw Extrusion 282</p> <p>18.4 Pressing 286</p> <p>18.5 Cutting 289</p> <p>18.6 Priming 289</p> <p>18.7 Miscellaneous 289</p> <p>18.8 Accidents and Process Safety 290</p> <p>18.8.1 Mixing 290</p> <p>18.8.2 Pressing 293</p> <p>18.8.3 Process Analysis 294</p> <p>18.8.4 Personal Protection Equipment (PPE) 294</p> <p>References 296</p> <p><b>19 Sensitivity </b><b>299</b></p> <p>19.1 Introduction 299</p> <p>19.2 Impact Sensitivity 300</p> <p>19.2.1 MTV 300</p> <p>19.2.2 Titanium/PTFE/Viton and Zirconium/PTFE/Viton 300</p> <p>19.2.3 Metal–Fluorocarbon Solvents 301</p> <p>19.2.4 Viton as Binder in Mg/NaNO<sub>3</sub> 301</p> <p>19.3 Friction and Shear Sensitivity 301</p> <p>19.3.1 Metal/Fluorocarbon 303</p> <p>19.4 Thermal Sensitivity 304</p> <p>19.4.1 MTV 304</p> <p>19.5 ESD Sensitivity 305</p> <p>19.6 Insensitive Munitions Testing 310</p> <p>19.6.1 Introduction 310</p> <p>19.6.2 Cookoff 314</p> <p>19.6.3 Bullet Impact 316</p> <p>19.6.4 Sympathetic Reaction 319</p> <p>19.6.5 IM Signature Summary 320</p> <p>19.7 Hazards Posed by Loose In-Process MTV Crumb and TNT Equivalent 321</p> <p>References 323</p> <p><b>20 Toxic Combustion Products </b><b>326</b></p> <p>20.1 MTV Flare Composition 326</p> <p>20.2 Obscurant Formulations 330</p> <p>20.3 Fluorine Compounds 331</p> <p>20.3.1 Hydrogen Fluoride 331</p> <p>20.3.2 Aluminium Fluoride 331</p> <p>20.3.3 Magnesium Fluoride 332</p> <p>References 332</p> <p><b>21 Outlook </b><b>334</b></p> <p>References 335</p> <p>Index 337</p>
<p><b><i>Dr. Ernst-Christian Koch </b> is Technical Specialist Officer at the NATO Munitions Safety Information Center (MSIAC), Brussels, Belgium. He studied chemistry at the Technical University of Kaiserslautern, Germany and was awarded his doctoral degree by the same university in 1995. Before joining NATO in 2008, Dr. Koch spent 12 years working as a scientist for the German defense industry, developing energetic mate-rials and countermeasures. He is author of more than 20 peer reviewed papers and two book chapters. He holds more than 100 patents on energetic materials and countermeasures. Dr. Koch is a Lecturer on Energetic Materials at Technical University of Kaiserslautern/Germany and Pardubice Univer-sity/Czech Republic and he currently serves as Vice President of the International Pyrotechnics Society and as an Editorial Board Member of Propellants Explosives Pyrotechnics.</i></p>
<p> This exciting new book details all aspects of a major class of pyrolants and elucidates the progress that has been made in the field, covering both the chemistry and applications of these compounds.</p><p> Written by a pre-eminent authority on the subject from the NATO Munitions Safety Information Analysis Center (MSIAC), it begins with a historical overview of the development of these materials, followed by a thorough discussion of their ignition, combustion and radiative properties. The next section explores the multiple facets of their military and civilian applications, as well as industrial synthetic techniques. The critical importance of the associated hazards, namely sensitivity, stability and aging, are discussed in detail, and the book is rounded off by an examination of the future of this vital and expanding field.</p><p>The result is a complete guide to the chemistry, manufacture, applications and required safety precautions of pyrolants for both the military and chemical industries.</p><p><b>From the preface:</b><BR>“... This book fills a void in the collection of pyrotechnic literature... <BR>it will make an excellent reference book that all researchers of pyrolants and energetics must have...” <BR><i>Dr. Bernard E. Douda, Dr. Sara Pliskin, NAVSEA Crane, IN, USA</i></p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
CHF 62.00