Details

Unconventional Nanopatterning Techniques and Applications


Unconventional Nanopatterning Techniques and Applications


1. Aufl.

von: John A. Rogers, Hong H. Lee

CHF 124.00

Verlag: Wiley
Format: PDF
Veröffentl.: 13.11.2008
ISBN/EAN: 9780470405772
Sprache: englisch
Anzahl Seiten: 616

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Patterning or lithography is at the core of modern science and technology and cuts across all disciplines. With the emergence of nanotechnology, conventional methods based on electron beam lithography and extreme ultraviolet photolithography have become prohibitively expensive. As a result, a number of simple and unconventional methods have been introduced, beginning first with research demonstrations in the mid 1990s. This book focuses on these unconventional patterning techniques and their applications to optics, organic devices, electronic devices, biological devices, and fluidics.
<p>PREFACE xv</p> <p>I NANOPATTERNING TECHNIQUES 1</p> <p>1 INTRODUCTION 3</p> <p>2 MATERIALS 7</p> <p>2.1 Introduction 7</p> <p>2.2 Mold Materials and Mold Preparation 8</p> <p>2.2.1 Soft Molds 8</p> <p>2.2.2 Hard Molds 19</p> <p>2.2.3 Rigiflex Molds 19</p> <p>2.3 Surface Treatment and Modification 21</p> <p>References 23</p> <p>3 PATTERNING BASED ON NATURAL FORCE 27</p> <p>3.1 Introduction 27</p> <p>3.2 Capillary Force 28</p> <p>3.2.1 Open-Ended Capillary 29</p> <p>3.2.2 Closed Permeable Capillary 31</p> <p>3.2.3 Completely Closed Capillary 40</p> <p>3.2.4 Fast Patterning 43</p> <p>3.2.5 Capillary Kinetics 45</p> <p>3.3 London Force and Liquid Filament Stability 48</p> <p>3.3.1 Patterning by Selective Dewetting 49</p> <p>3.3.2 Liquid Filament Stability: Filling and Patterning 51</p> <p>3.4 Mechanical Stress: Patterning of A Metal Surface 56</p> <p>References 63</p> <p>4 PATTERNING BASED ON WORK OF ADHESION 67</p> <p>4.1 Introduction 67</p> <p>4.2 Work of Adhesion 68</p> <p>4.3 Kinetic Effects 71</p> <p>4.4 Transfer Patterning 74</p> <p>4.5 Subtractive Transfer Patterning 79</p> <p>4.6 Transfer Printing 82</p> <p>References 91</p> <p>5 PATTERNING BASED ON LIGHT: OPTICAL SOFT LITHOGRAPHY 95</p> <p>5.1 Introduction 95</p> <p>5.2 System Elements 96</p> <p>5.2.1 Overview 96</p> <p>5.2.2 Elastomeric Photomasks 96</p> <p>5.2.3 Photosensitive Materials 99</p> <p>5.3 Two-Dimensional Optical Soft Lithography (OSL) 100</p> <p>5.3.1 Two-Dimensional OSL with Phase Masks 100</p> <p>5.3.2 Two-Dimensional OSL with Embossed Masks 104</p> <p>5.3.3 Two-Dimensional OSL with Amplitude Masks 105</p> <p>5.3.4 Two-Dimensional OSL with AmplitudePhase Masks 109</p> <p>5.4 Three-Dimensional Optical Soft Lithography 110</p> <p>5.4.1 Optics 111</p> <p>5.4.2 Patterning Results 112</p> <p>5.5 Applications 117</p> <p>5.5.1 Low-Voltage Organic Electronics 117</p> <p>5.5.2 Filters and Mixers for Microfluidics 118</p> <p>5.5.3 High Energy Fusion Targets and Media for Chemical Release 118</p> <p>5.5.4 Photonic Bandgap Materials 120</p> <p>References 122</p> <p>6 PATTERNING BASED ON EXTERNAL FORCE: NANOIMPRINT LITHOGRAPHY 129<br />L. Jay Guo</p> <p>6.1 Introduction 129</p> <p>6.2 NIL MOLD 133</p> <p>6.2.1 Mold Fabrication 133</p> <p>6.2.2 Mold Surface Preparation 137</p> <p>6.2.3 Flexible Fluoropolymer Mold 137</p> <p>6.3 NIL Resist 138</p> <p>6.3.1 Thermoplastic Resist 139</p> <p>6.3.2 Copolymer Thermoplastic Resists 141</p> <p>6.3.3 Thermal-Curable Resists 142</p> <p>6.3.4 UV-Curable Resist 146</p> <p>6.3.5 Other Imprintable Materials 148</p> <p>6.4 The Nanoimprint Process 149</p> <p>6.4.1 Cavity Fill Process 149</p> <p>6.5 Variations of NIL Processes 152</p> <p>6.5.1 Reverse Nanoimprint 152</p> <p>6.5.2 Combined Nanoimprint and Photolithography 155</p> <p>6.5.3 Roll-to-Roll Nanoimprint Lithography (R2RNIL) 156</p> <p>6.6 Conclusion 159</p> <p>References 160</p> <p>7 PATTERNING BASED ON EDGE EFFECTS: EDGE LITHOGRAPHY 167<br />Matthias Geissler, Joseph M. McLellan, Eric P. Lee and Younan Xia</p> <p>7.1 Introduction 167</p> <p>7.2 Topography-Directed Pattern Transfer 169</p> <p>7.2.1 Photolithography with Phase-Shifting Masks 170</p> <p>7.2.2 Use of Edge-Defined Defects in SAMs 172</p> <p>7.2.3 Controlled Undercutting 175</p> <p>7.2.4 Edge-Spreading Lithography 176</p> <p>7.2.5 Edge Transfer Lithography 178</p> <p>7.2.6 Step-Edge Decoration 180</p> <p>7.3 Exposure of Nanoscale Edges 181</p> <p>7.3.1 Fracturing of Thin Films 182</p> <p>7.3.2 Sectioning of Encapsulated Thin Films 182</p> <p>7.3.3 Thin Metallic Films along Sidewalls of Patterned Stamps 184</p> <p>7.3.4 Topographic Reorientation 186</p> <p>7.4 Conclusion and Outlook 187</p> <p>References 188</p> <p>8 PATTERNING WITH ELECTROLYTE: SOLID-STATE SUPERIONIC STAMPING 195<br />Keng H. Hsu, Peter L. Schultz, Nicholas X. Fang, and Placid M. Ferreira</p> <p>8.1 Introduction 195</p> <p>8.2 Solid-State Superionic Stamping 197</p> <p>8.3 Process Technology 199</p> <p>8.4 Process Capabilities 203</p> <p>8.5 Examples of Electrochemically Imprinted Nanostructures Using the S4 Process 208</p> <p>Acknowledgments 211</p> <p>References 211</p> <p>9 PATTERNING WITH GELS: LATTICE-GAS MODELS 215<br />Paul J. Wesson and Bartosz A. Grzybowski</p> <p>9.1 Introduction 215</p> <p>9.2 The RDF Method 218</p> <p>9.3 Microlenses: Fabrication 218</p> <p>9.4 Microlenses: Modeling Aspects 220</p> <p>9.4.1 Modeling Using PDEs 220</p> <p>9.4.2 Modeling Using Lattice-Gas Method 221</p> <p>9.5 RDF at the Nanoscale 222</p> <p>9.5.1 Nanoscopic Features from Counter-Propagating RD Fronts 222</p> <p>9.5.2 Failure of Continuum Description 225</p> <p>9.5.3 Lattice-Gas Models at the Nanoscale 227</p> <p>9.6 Summary and Outlook 229</p> <p>References 230</p> <p>10 PATTERNING WITH BLOCK COPOLYMERS 233<br />Jia-Yu Wang, Wei Chen, and Thomas P. Russell</p> <p>10.1 Introduction 233</p> <p>10.2 Orientation 235</p> <p>10.2.1 Self-Assembling 235</p> <p>10.2.2 Self-Directing 247</p> <p>10.3 Long-Range 254</p> <p>10.3.1 Solvent Annealing 254</p> <p>10.3.2 Graphoepitaxy 256</p> <p>10.3.3 Sequential, Orthogonal Fields 260</p> <p>10.4 Nanoporous BCP Films 262</p> <p>10.4.1 Ozonolysis 264</p> <p>10.4.2 Thermal Degradation 264</p> <p>10.4.3 UV Degradation 267</p> <p>10.4.4 Selective Extraction 271</p> <p>10.4.5 “Soft” Chemical Etch 272</p> <p>10.4.6 Cleavable Junction 272</p> <p>10.4.7 Solvent-Induced Film Reconstruction 274</p> <p>References 276</p> <p>11 PERSPECTIVE ON APPLICATIONS 291</p> <p>II APPLICATIONS 293</p> <p>12 SOFT LITHOGRAPHY FOR MICROFLUIDIC MICROELECTROMECHANICAL SYSTEMS (MEMS)<br />AND OPTICAL DEVICES 295<br />Svetlana M. Mitrovski, Shraddha Avasthy, Evan M. Erickson, Matthew E. Stewart, John A. Rogers, and Ralph G. Nuzzo</p> <p>12.1 Introduction 295</p> <p>12.2 Microfluidic Devices for Concentration Gradients 297</p> <p>12.3 Electrochemistry and Microfluidics 300</p> <p>12.4 PDMS and Electrochemistry 302</p> <p>12.5 Optics and Microfluidics 306</p> <p>12.6 Unconventional Soft Lithographic Fabrication of Optical Sensors 314</p> <p>Acknowledgments 317</p> <p>References 318</p> <p>13 UNCONVENTIONAL PATTERNING METHODS FOR BIONEMS 325<br />Pilnam Kim, Yanan Du, Ali Khademhosseini, Robert Langer, and Kahp Y. Suh</p> <p>13.1 Introduction 325</p> <p>13.2 Fabrication of Nanofluidic System for Biological Applications 326</p> <p>13.2.1 Unconventional Methods for Fabrication of Nanochannel 326</p> <p>13.2.2 Application of Nanofluidic System 332</p> <p>13.3 Fabrication of Biomolecular Nanoarrays for Biological Applications 338</p> <p>13.3.1 DNA Nanoarray 338</p> <p>13.3.2 Protein Arrays 340</p> <p>13.3.3 Lipid Array 345</p> <p>13.4 Fabrication of Nanoscale Topographies for Tissue Engineering Applications 347</p> <p>13.4.1 Nanotopography-Induced Changes in Cell Adhesion 347</p> <p>13.4.2 Nanotopography-Induced Changes in Cell Morphology 348</p> <p>References 349</p> <p>14 MICRO TOTAL ANALYSIS SYSTEM 359<br />Yuki Tanaka and Takehiko Kitamori</p> <p>14.1 Introduction 359</p> <p>14.1.1 Historical Backgrounds 359</p> <p>14.2 Fundamentals on Microchip Chemistry 361</p> <p>14.2.1 Characteristics of Liquid Microspace 361</p> <p>14.2.2 Liquid Handling 362</p> <p>14.2.3 Concepts of Micro Unit Operation and Continuous-Flow Chemical Processing 362</p> <p>14.3 Key Technologies 365</p> <p>14.3.1 Fabrication of Microchips 365</p> <p>14.3.2 Patterning for Fluid Control 366</p> <p>14.3.3 Detection 366</p> <p>14.4 Applications 368</p> <p>14.4.1 Synthesis 368</p> <p>14.4.2 Cell Adhesion Control 369</p> <p>14.4.3 Liquid Handling: Valve Using Wettability 370</p> <p>References 372</p> <p>15 COMBINATIONS OF TOP-DOWN AND BOTTOM-UP NANOFABRICATION TECHNIQUES AND THEIR APPLICATION TO CREATE FUNCTIONAL DEVICES 379<br />Pascale Maury, David N. Reinhoudt, and Jurriaan Huskens</p> <p>15.1 Introduction 379</p> <p>15.2 Top-Down and Bottom-Up Techniques 380</p> <p>15.2.1 Top-Down Techniques 380</p> <p>15.2.2 Bottom-Up Techniques 383</p> <p>15.2.3 Mixed Techniques 384</p> <p>15.3 Combining Top-Down and Bottom-Up Techniques for High Resolution Patterning 385</p> <p>15.3.1 Top-Down Nanofabrication and Polymerization 386</p> <p>15.3.2 Top-Down Nanofabrication and Micelles 387</p> <p>15.3.3 Top-Down Nanofabrication and Block Copolymer Assembly 387</p> <p>15.3.4 Top-Down Nanofabrication and NP Assembly 389</p> <p>15.3.5 Top-Down Nanofabrication and Layer-by-Layer Assembly 392</p> <p>15.4 Applicaion of Combined Top-Down and Bottom-Up Nanofabrication for Creating Functional Devices 397</p> <p>15.4.1 Photonic Crystal Devices 397</p> <p>15.4.2 Protein Assays 400</p> <p>References 406</p> <p>16 ORGANIC ELECTRONIC DEVICES 419</p> <p>16.1 Introduction 419</p> <p>16.2 Organic Light-Emitting Diodes 420</p> <p>16.3 Organic Thin Film Transistors 429</p> <p>References 439</p> <p>17 INORGANIC ELECTRONIC DEVICES 445</p> <p>17.1 Introduction 445</p> <p>17.2 Inorganic Semiconductor Materials for Flexible Electronics 446</p> <p>17.2.1 “Bottom-Up” Approaches 447</p> <p>17.2.2 “Top-Down” Approaches 449</p> <p>17.3 Soft Lithography Techniques for Generating Inorganic Electronic Systems 452</p> <p>17.3.1 Micromolding in Capillaries 453</p> <p>17.3.2 Imprint Lithography 454</p> <p>17.3.3 Dry Transfer Printing 454</p> <p>17.4 Fabrication of Electronic Devices 459</p> <p>17.4.1 Transistors on Rigid Substrates via MIMIC Processing 459</p> <p>17.4.2 Flexible Inorganic Transistors 459</p> <p>17.4.3 Flexible Integrated Circuits 463</p> <p>17.4.4 Heterogeneous Electronics 466</p> <p>17.4.5 Stretchable Electronics 469</p> <p>References 475</p> <p>18 MECHANICS OF STRETCHABLE SILICON FILMS ON ELASTOMERIC SUBSTRATES 483<br />Hanqing Jiang, Jizhou Song, Yonggang Huang, and John A. Rogers</p> <p>18.1 Introduction 483</p> <p>18.2 Buckling Analysis of Stiff Thin Ribbons on Compliant Substrates 484</p> <p>18.3 Finite-Deformation Buckling Analysis of Stiff Thin Ribbons on Compliant Substrates 488</p> <p>18.4 Edge Effects 495</p> <p>18.5 Effect of Ribbon Width and Spacing 498</p> <p>18.6 Buckling Analysis of Stiff Thin Membranes on Compliant Substrates 502</p> <p>18.6.1 One-Dimensional Buckling Mode 504</p> <p>18.6.2 Checkerboard Buckling Mode 506</p> <p>18.6.3 Herrington Buckling Mode 506</p> <p>18.7 Precisely Controlled Buckling of Stiff Thin Ribbons on Compliant Substrates 507</p> <p>18.8 Concluding Remarks 512</p> <p>Acknowledgments 512</p> <p>References 512</p> <p>19 MULTISCALE FABRICATION OF PLASMONIC STRUCTURES 515<br />Joel Henzie, Min H. Lee, and Teri W. Odom</p> <p>19.1 Introduction 515</p> <p>19.1.1 Brief Primer on Surface Plasmons 517</p> <p>19.1.2 Conventional Methods to Plasmonic Structures 518</p> <p>19.2 Soft Lithography and Metal Nanostructures 518</p> <p>19.3 A Platform for Multiscale Patterning 520</p> <p>19.3.1 Soft Interference Lithography: Patterns on a Nanoscale Pitch 520</p> <p>19.3.2 Phase-Shifting Photolithography: Patterns on a Microscale Pitch 520</p> <p>19.3.3 PEEL: Transferring Photoresist Patterns to Plasmonic Materials 521</p> <p>19.4 Subwavelength Arrays of Nanoholes: Plasmonic Materials 522</p> <p>19.4.1 Infinite Arrays of Nanoholes 523</p> <p>19.4.2 Finite Arrays (Patches) of Nanoholes 525</p> <p>19.5 Microscale Arrays of Nanoscale Holes 526</p> <p>19.6 Plasmonic Particle Arrays 528</p> <p>19.6.1 Metal and Dielectric Nanoparticles 528</p> <p>19.6.2 Anisotropic Nanoparticles 531</p> <p>19.6.3 Pyramidal Nanostructures 531</p> <p>Acknowledgments 533</p> <p>References 533</p> <p>20 A RIGIFLEX MOLD AND ITS APPLICATIONS 539<br />Se-Jin Choi, Tae-Wan Kim, and Seung-Jun Baek</p> <p>20.1 Introduction 539</p> <p>20.2 Modulus-Tunable Rigiflex Mold 540</p> <p>20.3 Applications of Rigiflex Mold 544</p> <p>20.3.1 From Nanoimprint to Microcontact Printing 544</p> <p>20.3.2 Rapid Flash Patterning for Residue-Free Patterning 547</p> <p>20.3.3 Continuous Rigiflex Imprinting 549</p> <p>20.3.4 Soft Molding Application 553</p> <p>20.3.5 Capillary Force Lithography Applications 556</p> <p>20.3.6 Transfer Fabrication Technique 558</p> <p>References 561</p> <p>21 NANOIMPRINT TECHNOLOGY FOR FUTURE LIQUID CRYSTAL DISPLAY 565<br />Jong M. Kim, Hwan Y. Choi, Moon-G. Lee, Seungho Nam, Jin H. Kim, Seongmo Whang, Soo M. Lee, Byoung H. Cheong, Hyuk Kim, Ji M. Lee, and In T. Han</p> <p>21.1 Introduction 565</p> <p>21.2 Holographic LGP 569</p> <p>21.2.1 Design and Properties of Holographic LGP 570</p> <p>21.2.2 NI Technology for the Holographic LGP 572</p> <p>21.3 Polarized LGP 573</p> <p>21.3.1 Design and Properties of Polarized LGP 574</p> <p>21.3.2 Fabrication of the Polarized LGP 575</p> <p>21.3.3 Optical Performance of the Polarized LGP 576</p> <p>21.4 Reflective Polarizer: Wire Grid Polarizer 579</p> <p>21.4.1 Design and Properies of WGP 580</p> <p>21.4.2 Fabrication and Applications 581</p> <p>21.5 Transflective Display 585</p> <p>21.5.1 Design and Optical Properties of Reflecting Pattern 587</p> <p>21.5.2 Fabrication of the Reflecting Pattern 588</p> <p>References 592</p> <p>INDEX 595</p>
<b>John A. Rogers, PhD</b>, holds the Lee J. Flory-Founder Chair in the College of Engineering at the University of Illinois at Urbana-Champaign. He was selected as one of the Top 50 Research Leaders by Scientific American. Dr. Rogers has authored more than 200 papers and holds nearly sixty patents. <p><b>Hong H. Lee, PhD</b>, is a Professor in the School of Chemical and Biological Engineering at the Seoul National University, Korea. He is the author of more than 200 papers and two books.</p>
New nanopatterning techniques with realistic potential for widespread use <p>This book helps readers learn the skills needed to fully leverage the most promising unconventional nanofabrication techniques. It focuses on soft lithographic and related imprint lithographic methods, but also features self-assembly approaches that have excellent potential. All the techniques covered have the scalability, throughput, and low cost operation needed for use in practical applications.</p> <p>Content is organized into two parts:</p> <ul> <li> <p>Part One, Nanopatterning Techniques, deals with the principles and underlying science of a variety of nanopatterning techniques. The first chapter covers the classes of materials and surface chemistries that are most commonly used for the stamps, molds, and conformable photomasks of soft lithography. Several chapters then review both established and new strategies for using them and their analogous hard elements in a broad range of procedures. Next, the authors demonstrate the power of self-assembly in procedures that rely on polymer phase separation.</p> </li> <li> <p>Part Two, Applications, presents the applications of techniques discussed in Part One in some of the most promising areas, including optics, organic devices, electronic devices, biological devices, and fluidics. In addition to detailed explanations of the implementation of each application, these chapters also discuss the aspects related to practical applications.</p> </li> </ul> <p>Each chapter has been written by one or more leading pioneers in the field of nanofabrication. References at the end of the chapter guide you to the primary literature for further information.</p> <p><i>Unconventional Nanopatterning Techniques and Applications</i> offers practitioners, developers, and students the ability to not only implement the latest techniques, but also expand the capabilities and reach of these techniques with their own ideas and novel applications.</p>

Diese Produkte könnten Sie auch interessieren: