Details

Vanadium Oxide-Based Cathode for Supercapacitor Applications


Vanadium Oxide-Based Cathode for Supercapacitor Applications

Using Electrodeposition Method
SpringerBriefs in Applied Sciences and Technology

von: Hairus Abdullah

CHF 53.50

Verlag: Springer
Format: PDF
Veröffentl.: 16.08.2024
ISBN/EAN: 9789819752430
Sprache: englisch
Anzahl Seiten: 125

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<p>This book highlights the use/application of Vanadium Oxide as a Supercapacitor (SC) material using the electrodeposition method. The preparation methods, material characterization, and performance testing of VOx-based SC are thoroughly discussed. Electrolyte solutions from VCl3 and other metal precursors are used to form V3O5 electrodes on nickel foam (NF). The cathode can deliver a specific capacitance value of 5689 F/g. The work is improved by depositing V3O5 film on Ni(OH)2 to form a bilayer coating on NF substrate. Ni(OH)2 with a nano-sheet structure is used for the purpose of increasing the specific surface area of V3O5 layer which can achieve specific capacitance of 7500 F/g, the energy density of 167 Wh/kg, and the power density of 199 W/kg. After 10,000 charge-discharge cycles, the capacitance retention rate is 93%. Finally, a full cell SC is assembled using the bilayer electrode and active carbon. The asymmetric and symmetric full cells performed the specific capacitances of 390 F/g and 846 F/g, the energy densities of 286 Wh/kg and 170 Wh/kg, and the power densities of 1149 W/kg and 602 W/g, respectively. After 10,000 charge-discharge cycles, the capacitance retention rates of asymmetric and symmetric full cells are 97% and 95%, respectively.</p>
<p>1. Introduction.- 2. Materials and experimental procedures.- 3. Characterization and material testing of Ni foam/Ni-doped V<sub>3</sub>O<sub>5</sub>&nbsp;cathode.- 4. Developing VO<sub>x</sub>&nbsp;cathode on Ni(OH)<sub>2</sub>&nbsp;nano sheets grown on Ni foam substrate.- 5. Assembly of a full-cell supercapacitor with amorphous Ni-doped VO<sub>x</sub>-modified Ni(OH)<sub>2</sub>&nbsp;cathode and active-carbon anode.</p>
<p><strong>Dr. Hairus Abdullah&nbsp;</strong>received his doctoral degree from the Department of Materials Science and Engineering, National Taiwan University of Science and Technology (NTUST), in 2016. He continued to serve as a postdoctoral fellow in the same department till 2019. Afterward, he became a visiting professor in the Department of Materials Science and Engineering, NTUST. In addition, he also supports academic and research activities at Universitas Prima Indonesia (UNPRI), Medan, Indonesia. His research interests are in photocatalysis (including hydrogen evolution reaction, hydrogenation of toxic species, antibacterial application), electrocatalysis, photoelectrocatalysis, and supercapacitors.</p>
Highlights the use of Vanadium Oxide as a Supercapacitor (SC) material using the electrodeposition method Presents methods, material characterization, and performance testing of VOx-based SC Discusses how a nano-sheet structure can be used for the purpose of increasing the specific surface area of V3O5 layer

Diese Produkte könnten Sie auch interessieren:

Introduction to Focused Ion Beams
Introduction to Focused Ion Beams
von: Lucille A. Giannuzzi, Lucille A. North Carolina State University
PDF ebook
CHF 153.50
Advanced Magnetic Nanostructures
Advanced Magnetic Nanostructures
von: D.J. Sellmyer, Ralph Skomski
PDF ebook
CHF 177.00
High Thermal Conductivity Materials
High Thermal Conductivity Materials
von: Subhash L. Shinde, Jitendra Goela
PDF ebook
CHF 177.00